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Abstract

Finite element models based on Biot’s fu;Pg formulation for poroelastic materials are widely used to
predict the behaviour of structures involving porous media. The numerical solution of such problems
requires however important computational resources and the solution algorithms are not optimized. To
improve the solution process, a modal approach based on an extension of the complex modes technique has
been proposed recently and applied successfully to a simplified mono-dimensional problem. In this paper,
this technique is investigated in the case of three-dimensional poroelastic problems. The technique is first
recalled, then analytical proof of the stability of the model are given followed by considerations of
numerical improvements of the method. An energetic interpretation of the generalized complex modes is
then given and some numerical results are presented to illustrate the performance of the approach.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Porous materials are commonly used in many applications in the fields of aeronautics,
automobile, civil engineering and buildings because of their interesting properties of absorption of
either acoustical waves or mechanical energy. The dynamical behaviour of such materials can be
well predicted by using the Biot/Allard formulation [1–4]. Several other formulations [5–9] have
been proposed to calculate the vibroacoustic behaviour of multilayered structures involving these
media. Among them, Panneton and Atalla [7] presented a finite-element formulation based on the
fu;Ug displacement formalism. Mixed fu;Pg formulations have then been undertaken. Atalla
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et al. [10] and Debergue et al. [11] proposed a weak integral formulation for a mixed pressure–
displacement version of Biot’s poroelasticity equations for harmonic time dependencies and its
finite-element discretization. This fu;Pg formulation is adopted in the rest of this paper.

Nevertheless, the main drawback of the finite-element techniques applied to poroelastic
materials lies in the large size of the linear systems to be solved. To improve the solving process,
different solutions have been investigated. Some of them consisted of improving the convergence
of the finite-element approach like hierarchical elements [12,13] or high order Lagrange elements
[14] or to use other basis functions to express the solution like a mixed wave finite element method
[15]. Another set of techniques relies on modal analysis. However, the application of classical
modal techniques to the mixed fu;Pg finite-element problem is prohibited by the non-linear
frequency dependency of the associated eigenvalue problem. Simplified modal techniques have
been introduced [16,17]. Nevertheless, none of these approaches leads to a significant reduction of
the number of degrees of freedom, particularly for three-dimensional configurations.

Recently, Dazel et al. [18] proposed a generalized complex mode technique for poroelastic
problems and applied it to a simplified finite-element mono-dimensional problem. This technique
consists of making a Taylor expansion of the frequency-dependant coefficients of the model and
then solving the associated eigenvalue problem in a generalized state space extending the one
introduced by Duncan et al. [19]. It has been shown that this technique allows for the con-
vergence of the solution and yields a significant reduction of the number of degrees of freedom of
the problem. Preliminary investigations of a numerical convergence criterion have also been
carried out.

The purpose of this paper is to investigate the performance of the complex modal technique in
the calculation of the forced response of three-dimensional porous materials. The main
contributions of this paper are an analytical proof of the stability of the solution, numerical
improvements of the method, an energetic interpretation of generalized complex modes and a
presentation of three-dimensional applications. Section 2 recalls the finite-element poroelastic
problem together with the generalized complex mode technique as introduced in Ref. [18]. Section
3 presents theoretical arguments of the stability of the solution and Section 4 deals with numerical
improvements of this technique, which are specific to the poroelastic problem. More particularly,
Section 5 is devoted to the energetic analysis of generalized complex modes and Section 6 deals
with the convergence of the procedure in the case of three-dimensional poroelastic problems.
Section 7 concludes the paper.

2. Generalized complex mode technique

2.1. The original poroelastic problem

The finite-element problem associated with the harmonic forced response of a porous material
at circular frequency o is given by Atalla et al. [10]

ð1þ jZsÞ½Kint� þ ð joÞ2 *r½Mint� �*g½Cint�

�o2*g½Cint�t
h2fr22r22

½Hint� � o2 h2

*R
½Qint�

264
375 u

P

( )
e jot ¼

Fs

F f

( )
e jot: ð1Þ
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u is the displacement nodal vector of the solid phase, and P is the interstitial pressure nodal vector
of the fluid phase. Fs and Fp are, respectively, the forcing applied to the solid and to the fluid
phase. h denotes the porosity. The effective densities *r; fr22r22 and the coupling coefficient *g are given
by Atalla et al. [10]. Zs is the structural damping coefficient and *R may be interpreted as the bulk
modulus of the air occupying a fraction h of a unit volume of aggregate. ½Kint�; ½Mint� are,
respectively, associated with the stiffness and mass matrices of the solid phase. ½Hint� and ½Qint� are,
respectively, associated with the kinetic and compression energy matrices of the fluid phase. ½Cint�
is a coupling matrix between the solid and fluid phase. The definition of these matrices are given in
Ref. [10]. Superscript ‘‘B’’ represents the complex frequency dependencies of the coefficients
induced by both the constitutive laws and the specific fu;Pg formulation.

2.2. Presentation of the technique

First of all, and for the sake of clarity, the headlines of the technique needed to understand this
paper are presented. Details can be found in Ref. [18]. This technique is divided in four parts: the
construction of the augmented problem, the mode computation, the projection of the problem on
the modal family and the solving of the modal problem.

The purpose of the generalized complex mode technique is to approach the modes of a
frequency-dependent operator D which can be written as

Du ¼
Xd

i¼0

½Mi�ð joÞ
iuþRdu ¼ DduþRdu: ð2Þ

Dd is called the expansion of operator D; Rd is called the remainder where d corresponds to the
order of Taylor expansions in terms of o: Problem (1) can be expressed in the previous form by
noting that

*r½Mint� ¼
Xd

i¼0

mið joÞ
i½Mint� þ Oðodþ1Þ; ½Kint� ¼

Xd

i¼0

kið joÞ
i½Kint� þ Oðodþ1Þ; ð3aÞ

1fr22r22

½Hint� ¼
Xd

i¼0

hið joÞ
i½Hint� þ Oðodþ1Þ;

1

*R
½Qint� ¼

Xd

i¼0

qið joÞ
i½Qint� þ Oðodþ1Þ; ð3bÞ

*g½Cint� ¼
Xd

i¼0

cið joÞ
i½Cint� þ Oðodþ1Þ; ð3cÞ

where mi; hi; qi and ci are the coefficients of the Taylor expansions of *r; h2= *r22; h2= *R and *g;
respectively. As in Ref. [18] the structural damping is omitted in the step of calculation of modes.
½ *K� is then equal to ½Kint� so that k0 ¼ 1 and ki ¼ 0 for iANn: Hence, for the poroelastic problem,
all these coefficients are real.

Eq. (1) can then be rewritten asXd

i¼0

½Mi�ð joÞ
i u

P

( )
þ ½Rd �ðoÞ

u

P

( )
¼

Fs

Fp

( )
: ð4Þ
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The different matrices ½Mi� are given by

½M0� ¼
½0� ½0�

½0� �h0½Hint�

" #
; ð5Þ

½M1� ¼
½0� ½0�

½0� �h1½Hint�

" #
; ð6Þ

½M2� ¼
k0½Kint� �c0½Cint�

�c0½Cint�t �h2½Hint� � q0½Qint�

" #
; ð7Þ

½M3� ¼
½0� �c1½Cint�

�c1½Cint�t �h3½Hint� � q1½Qint�

" #
; ð8Þ

½Mi� ¼
mi�4½Mint� �ci�2½Cint�

�ci�2½Cint�t �hi½Hint� � qi�2½Qint�

" #
ðiX4Þ: ð9Þ

Each ½Mi� is a real symmetric matrix and ½Rd �ðoÞ is a matrix depending on o and corresponding to
the remainder.

The modes of Dd can then be calculated using the generalized unknown vector U defined as
follows

U ¼

ð joÞd�1u

^

ð joÞu

u

8>>>><>>>>:

9>>>>=>>>>;: ð10Þ

This construction is a generalization of Duncan’s transformation [19]. Then, a classical modal
problem can be written

½A�U ¼ ð joÞ½B�U; ð11Þ

with

½A� ¼
½L� ½M0�

½C� ½0�

" #
and ½B� ¼

�½Md � ½0�

½0� ½C�

" #
; ð12Þ

where

½L� ¼ ½Md�1� ? ½M1�
� �

; ð13Þ

and ½C� is a ðnðd � 1Þ; nðd � 1ÞÞ matrix of trivial equations. It is possible to choose ½C� in order to
make ½A� and ½B� symmetric [18].
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For the numerical implementation, it has been shown that, in the case where ½Md � is invertible,
problem (11) can be written as

½C�U ¼
�½Md ��1½L� �½Md ��1½M0�

½Inðd�1Þ� ½0�

" #
U ¼ ð joÞU; ð14Þ

where ½Inðd�1Þ� denotes the identity matrix of order nðd � 1Þ: It means that the dimension of the
eigenvalue problem is equal to the product of the initial dimension of the system by the order of
the expansion. Once the problem is constructed (first step), the first ‘‘m’’ modes of Dd ; noted ½U�m;
are computed (second step).

The solution of the problem in terms of modal coordinates is then undertaken. It has been
shown [18] that the projection on the ½U�m family (third step) is equivalent to the projection on the
½w�m one, where

½U�m ¼ ½½w�tm½K�d�1
m ;y½w�tm½K�m; ½w�tm�

t; ð15Þ

where ½K�m is the diagonal matrix of eigenvalues associated with the ½w�m family. This allows for
projecting the initial problem Du ¼ f on the modal sub-family ½w�m instead of ½U�m thereby
reducing the computational cost associated to the projection process. The last step is the solution
of the problem of size m:

½w�tmD½w�mz ¼ ½w�tmf: ð16Þ

z corresponds to the vector of modal contributions. The value of m governs the convergence of the
model. A criterion to select this value allowing for the convergence of the solution has been
proposed. It consists of giving, for a considered configuration, a critical frequency oc and to select
only the modes whose imaginary part of the eigenvalue oi is lower than this critical frequency.
This critical frequency depends on the configuration, the loads and the maximum frequency of the
spectrum of excitation omax: An adimensional coefficient ac is introduced so that oc ¼ acomax:
The procedure of determination of ac is presented in Ref. [18] together with numerical
applications.

3. Stability of the solution

In the previous paper [18], the stability of the solution was not justified analytically. The aim of
this section is to prove it in the case of the poroelastic problem. This will show that the real part of
all the eigenvalues are negative and then ensure that the related modes are stable. As the fu;Ug
formulation is more suitable to prove the stability, the proof consists in expressing the generalized
eigenvalue problem in the fu;Ug formalism. Further calculations presented in Appendices A, B
and C allows one to simplify this problem and to finally prove the stability of the algorithm.

Let ðs; fu
P
gÞ be a solution of the generalized fu;Pg eigenvalue problem (4) with s ¼ sr þ jsi: This

solution is such that

s2½Kint� þ s4 #r ½Mint� �s2#g ½Cint�

#g½Cint�t
h2

s2

#1

r22

½Hint� þ h2
#1

R
½Qint�

264
375 u

P

( )
¼ 0: ð17Þ
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The ‘‘4’’ symbols correspond to the expansions of the corresponding tilded coefficients. For
example, the expression of #r is given by

#r ¼
Xnr
i¼0

mis
i: ð18Þ

nr is the order of the expansion of *r used for the construction of the modal problem. Hence, one
gets the expansions of : #r ¼ cr11r11 �

dr2
12=r22r2
12=r22;

d1=r221=r22;
d1=R1=R and #g ¼ h dr12=r22r12=r22 � dhQ=RhQ=R:

Let U be the equivalent modal fluid displacement field defined by

�h
#1

r22

rP ¼ s2U þ s2
cr12r12

r22

u: ð19Þ

Like all the quantities defined in this section, U is deduced from the calculated modal fields and
the expressions of the coefficients which were calculated for the expansion of the modal problem
for the fu;Pg formulation. U corresponds to the equivalent modal displacement of the fluid phase
for the considered modal problem. Similarly, the modal stress tensor of the solid phase drsðu;UÞrsðu;UÞ

and of the fluid phase dr f ðu;UÞr f ðu;UÞ defined by the modal constitutive laws deduced from both
stress–strain relation in harmonic motion and the expanded coefficients are now introduced

#1

R
drsðu;UÞrsðu;UÞ ¼

#A

R
r � uIþ 2

#1

R
NesðuÞ þ

#Q

R
r � UI; ð20aÞ

#1

R
dr f ðu;UÞr f ðu;UÞ ¼ r � UIþ

#Q

R
r � uI: ð20bÞ

I denotes the identity tensor. For memory, *A and N correspond to Lam!e’s coefficients for elastic
solids. *A is given by

*A ¼
ð1 � hÞ

h
*Q þ 2N

n
ð1� 2nÞ

; ð21Þ

n is the Poisson coefficient and N is the shear modulus. One gets

#A

R
¼

ð1 � hÞ2

h2
þ

#1

R
2N

n
ð1 � 2nÞ

: ð22Þ

The in vacuo stress tensor of the solid phase $rsðuÞ is then deduced from both modal stress
tensors by

$rsðuÞ ¼ drsðu;UÞrsðu;UÞ �
#Q

R
dr f ðu;UÞr f ðu;UÞ: ð23Þ

If the first block row of Eq. (17) is pre-multiplied by ð1=s2Þ d1=r221=r22u
n and the second block row by

ð d1=r221=r22ÞP
n (the symbol � denotes the conjugate), the equations of the solid and fluid phase are,

respectively, given by
#1

r22

un½Kint�uþ s2
#1

r22

#run½Mint�u�
#1

r22

#gun½Cint�P ¼ 0; ð24Þ

%#1

r22

#gPn½Cint�tuþ
h2

s2

#1

r22

%#1

r22

Pn½Hint�Pþ h2
%#1

r22

#1

R
Pn½Qint�P ¼ 0: ð25Þ
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Eqs. (24) and (25) are combined (details can be found in Appendix A) in order to obtain the
following relation

�Gkin þ Gdef ¼ 0; ð26aÞ

where

Gkin ¼ �s2
Z
O

cr011r011unu þ cr22r22

cr12r12

r22

ðunU þ UnuÞ þ cr22r22UnU

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ik

dO; ð26bÞ

and

Gdef ¼
Z
O

ð drsðu;UÞrsðu;UÞ : esðunÞ þ dr f ðu;UÞr f ðu;UÞ : e f ðUnÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Idef

dO: ð26cÞ

The following quantities have been introduced

cr011r011 ¼ cr11r11 þ cr22r22

cr12r12

r22

� �2

�
cr2
12r2
12

r22

; cr22r22 ¼
#1

r22

 !�1

: ð27Þ

Note that Gkin and Gdef correspond just to notations introduced in the calculation. Their physical
interpretation is hazardous when s is complex valued. However, it is possible to interpret them
physically when the eigenvalue s is purely imaginary that is s is replaced by jo: With this
assumption, the real part of Gkin can be interpreted as twice the modal kinetic energy of the porous
and the imaginary part as twice the modal energy dissipated through viscous damping. The real
part of Gdef represents twice the modal deformation energy of the porous and the imaginary part
twice the modal energy dissipated through thermal damping. The simplification of Ik and Idef

detailed in Appendices B and C leads to the rewriting of Eq. (26a) as

s2mðsÞ þ sðckinðsÞ þ cdÞ þ k0 þ rkðsÞ þ jikðsÞ ¼ 0; ð28Þ

with m and ckin functions of s with a positive real part and an imaginary part in Ojs=H j2: k0 and cd

pertains to Rþ and both real functions of rk and ik are in Ojs=H 0j2: H and H 0 are the characteristic
viscous and thermal circular frequencies introduced by Panneton [16].

These functions are split into real and imaginary parts such that mðsÞ ¼ mrðsÞ þ jmiðsÞ; ckinðsÞ þ
cd ¼ crðsÞ þ jciðsÞ and k0 þ rkðsÞ þ jikðsÞ ¼ krðsÞ þ jkiðsÞ: One has mrðsÞ > 0; crðsÞ > 0; krðsÞ > 0 and
the Landau’s relations, miðsÞ ¼ Ojs=H j2; ciðsÞ ¼ Ojs=H j2 and kiðsÞ ¼ Ojs=H 0j2: The real and
imaginary parts of Eq. (28) can then be separated. Hence,

ðs2r � s2i ÞmrðsÞ � 2srsimiðsÞ þ srcrðsÞ � siciðsÞ þ krðsÞ ¼ 0; ð29aÞ

2srsimrðsÞ þ ðs2r � s2i ÞmiðsÞ þ srciðsÞ þ sicrðsÞ þ kiðsÞ ¼ 0: ð29bÞ

The Landau’s relations on mi; ci and ki indicate that 2srsimiðsÞ ¼ oððs2r � s2i ÞmrðsÞÞ; srciðsÞ ¼
oðsicrðsÞÞ; siciðsÞ ¼ oðsrcrðsÞÞ and kiðsÞ ¼ oð2srsimrðsÞÞ: This allows one to neglect the corresponding
terms and Eq. (29b) gives

sið2srmrðsÞ þ crðsÞÞ ¼ 0: ð30Þ
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Hence, if sia0; one has sro0: If not, Eq. (29a) is rewritten

s2r mrðsÞ|fflfflffl{zfflfflffl}
ARþ

þsrcrðsÞ þ krðsÞ|ffl{zffl}
ARþ

¼ 0; ð31Þ

which indicates that sro0: The stability of the solution is then ensured.

4. Numerical improvements of the method

This section is devoted to the numerical implementation of this technique applied to three-
dimensional finite-element poroelastic problems. It relies on a special hypothesis related to the
configuration of interest in order to improve the computational process.

4.1. Configuration of interest and symmetries

The problem of interest is the case of a single three-dimensional poroelastic material bonded
onto a rigid wall. The sample has a parallelepipedic shape corresponding to a large class of
applications often found in the industrial and scientific literature. In those configurations it can be
noticed that the original problem has internal geometrical symmetries. Consequently, during the
mode computation, the internal symmetries will generate several solutions associated with the
same eigenvalue. This leads to convergence problems in the numerical computation of the modes.
In addition, it has been highlighted [18] that the orthogonality with respect to matrices ½A� and ½B�
is only valid if the eigenvalues are different. The alternative is then to consider a reduced problem
deduced from the initial one and taking into account the internal symmetries.

4.2. Construction of the augmented problem

4.2.1. General considerations

In order to find the modes of operator Dd ; Eq. (14) needs to be solved. As the system is large, it
is essential to calculate only a selected set of eigenvalues and eigenmodes. Hence, iterative
algorithms are the most appropriate for the mode computation [20]. They provide the
eigenvectors corresponding to the dominant eigenvalues (i.e., eigenvalues with the largest norm).
Since for the problem of interest, the eigenvalues with the lowest norm have to be computed,
adapted methods (inverse power iteration method, etc.) or direct methods applied to matrix ½C��1

need to be used. They both require the inversion of matrix ½C� whose size is nd: The following
subsection presents an equivalent eigenvalue problem derived from Eq. (14) which makes the
numerical computation of modes easier.

4.2.2. The modified poroelastic eigenvalue problem

The aim of this subsection is to modify the initial eigenvalue problem ½C�U ¼ ð joÞU into an
equivalent one ½C0�V ¼ ð1=joÞV: Hence, the search for the dominant eigenvalues of the modified
problem is equivalent to the search for the eigenvalues with the lowest norm of the initial problem.
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The eigenvalue problem associated with Eq. (1) is equivalent to

½Kint� þ ð joÞ2 *r½Mint� �ð joÞ*g½Cint�

�*g½Cint�t �
h2

*r22ð joÞ
½Hint� �

ð joÞh2

*R
½Qint�

264
375 ð joÞu

P

( )
¼ 0: ð32Þ

Hence, if ðs; fw;PgÞ is a solution of Eq. (32), ðs; fs�1w;PgÞ is a solution of the initial eigenvalue
problem. This new formulation has the advantage of leading to an invertible ½M0� matrix [18]. The
Taylor expansion of problem (32) readsXd

i¼0

½Mi�ð joÞ
ivþR0

dðoÞv ¼ 0; ð33Þ

with the following matrices:

½M0� ¼
k0½Kint� ½0�

�c0½Cint�t �h1½Hint�

" #
; ð34Þ

½M1� ¼
½0� �c0½Cint�

�c1½Cint�t �h2½Hint� � q0½Qint�

" #
; ð35Þ

½M2� ¼
m0½Mint� �c1½Cint�

�c2½Cint�t �h3½Hint� � q1½Qint�

" #
; ð36Þ

½Mi� ¼
mi�2½Mint� �ci�1½Cint�

�ci½Cint�t �hiþ1½Hint� � qi�1½Qint�

" #
ðiX3Þ; ð37Þ

where d corresponds to the order of Taylor expansion in terms of o: The generalized eigenvalue
problem (11) can be written as

ð joÞ½A0�V ¼ ½B0�V; V ¼

v

ð joÞv

^

ð joÞd�1v

8>>>><>>>>:

9>>>>=>>>>;; ð38Þ

½A0� ¼
½L0� ½Md �

½C� ½0�

" #
; ½B0� ¼

�½M0� ½0�

½0� ½C�

" #
; ½L0� ¼ ½ ½M1� ? ½Md�1� �; ð39Þ

which can be rewritten

½C0�V ¼
1

ð joÞ
V with ½C0� ¼

�½M0��1½L0� �½M0��1½Md �

½Inðd�1Þ� ½0�

" #
: ð40Þ

The computations of the lowest modes of the initial problem (14) is then equivalent to the search
for the dominant modes of Eq. (40).
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4.3. Search for modes

The second step of the method is the search for the modes. Two methods of determination of
the eigenvalues of similar problems were studied by Bridges and Morris [21]. In the case of interest
both eigenvalues and eigenvectors are needed and as the systems are generally large, iterative
algorithms are appropriate [20]. At the moment, such classical algorithms are used for this
computation. Because of their generality, these procedures do not optimize the solution. Hence,
there is a stake to develop an adapted algorithm for mode computation which can highly decrease
the number of needed operations. The particular form of matrix ½C0� can especially be judiciously
exploited.

4.4. Selection of modes

A procedure of selection was proposed in Ref. [18] which consisted of comparing the maximum
value of the spectrum of excitation and the maximum frequency of the selected eigenvalues. This
was based on the analytical expression of the contribution z of a given mode fs;Ug in the case
where the modal problem is diagonal (i.e., the problem whose modes are calculated is the one on
which the forcing is applied) for a poroelastic material excited by a force f at frequency o: The
norm of z can be expressed as the product of two terms; the space term and the frequency term.
Hence,

jzj ¼
wtf

Ut½B�U

"""" """" � 1

js � joj
: ð41Þ

In the former paper, only the frequency term was considered and all the space terms were
considered of the same order. The ratio ac between the maximum imaginary part of the selected
eigenvalue and the frequency of excitation was defined and provides then an empirical criterion
for the selection of modes. As this previous criterion of selection has no general validity, an
alternative procedure can be presented in order to give an other procedure to select the modes.
For the first excitation frequency, an initial ac is taken and the modal problem is solved with the
corresponding number of modes. The number can be, for example, obtained by looking to
previous simulations done with similar materials. A modal solution is then obtained and
converted to a temporary nodal result. The relative difference of the two members of Eq. (1) with
this solution is calculated. If this residual is estimated to be sufficiently small, the temporary result
is validated and the next frequency is investigated; in the other case, ac is increased and the
calculation is done until obtaining a satisfying residual.

4.5. Projection

To improve the projection process, two particular properties of the problem can be exploited.
Firstly, an adapted algorithm taking into account the sparse property of the matrix of the problem
issued from the finite-element discretization can decrease the time of computation of the projection.
Secondly, a property of the projection family ½w�m can be used. Indeed, it has been observed in
Ref. [18] that the numerical results are improved if the initial modes obtained by the search
procedure are divided into a solid and a fluid part for the modal solution. In three-dimensional
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cases, a splitting is performed by decoupling directions x; y and z: This splitting trick can be relevant
only for a parallelepipedic isotropic porous material because the linearity in space of the poroelastic
problem together with the particular geometry of the sample allow for it. Nevertheless, it leads to a
number of projection vectors equal to four times the number of selected modes. The difference
between the case where the modes are divided into two parts and the one where they are divided into
four parts needs further study. The theoretical explanation of this phenomena lies in the range of
computational research on numerical methods and is not the purpose of this paper. In the following,
all the presented cases will correspond to a splitting into four parts. Then, for each projection
vector, only the non-null coefficients corresponding to the considered direction need to be taken into
account for the projection, which improves the computation.

5. Study of generalized complex modes

The purpose of this section is to use an energetic interpretation of the different calculated modes
to exhibit two categories of modes. A presentation of the different expressions of the developed
powers is first undertaken for an harmonic excitation at circular frequency o: These expressions will
then be adapted to a modal context and two categories of modes will finally be obtained.

5.1. General considerations

First of all, the expressions of the powers developed by the elastic and inertial forces inside the
porous material at frequency o together with the dissipated powers are recalled [22]. The time-
averaged strain power and kinetic power are, respectively, given by

/PstrS ¼
o
2
un½Kint�uþR

h2o
2 *R

� �
Pn½Qint�P; ð42aÞ

/PkinS ¼
o3

2
Rð *rÞun½Mint�uþR

h2

2ofr22r22

� �
Pn½Hint�P�Iðo*gÞRðun½Cint�PÞ: ð42bÞ

In the second expression, the first term is related to the displacement of the solid phase, the second one
to the pressure of the fluid phase and the last one is a coupling term whose origin is the transformation
from the fu;Ug formalism into fu;Pg [10]. The time-averaged power dissipated can be subdivided
into contributions from powers dissipated through structural damping in the skeleton, viscous and
thermal effects which are, respectively, noted /Ps

disS; /Pv
disS; /Pt

disS and defined by Ref. [22].

/Ps
disS ¼

oZs

2
un½Kint�u; ð43aÞ

/Pv
disS ¼ �

o3

2
Ið *rÞun½Mint�u|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ps
vis

þI
h2

2ofr22r22

� �
Pn½Hint�P|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P
f

vis

�Iðo*gÞIðun½Cint�PÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P

coup
vis

; ð43bÞ

/Pt
disS ¼ �I

h2o
2 *R

� �
Pn½Qint�P: ð43cÞ
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For the time-averaged viscous dissipated powers, the same repartition is observed as for the time-
averaged kinetic power.

The following subsection is devoted to the application of these expressions to the obtained
modes.

5.2. Energetic interpretation of modes

5.2.1. Classification of modes

By analogy with fluid structure interaction problems, modes can be separated in two categories:
‘solid controlled modes’ and ‘fluid controlled modes’. It can be useful to find a criterion to
differentiate the two kinds of modes. It is proposed to investigate the ratio X between the
amplitude of the powers stored in each phase at the eigenfrequency (which corresponds to the sum
of kinetic and strain powers at o ¼ oi). Fig. 1 shows the ratio of the amplitude of the power
stored in the fluid phase to the one of the power stored in the solid phase for the calculated modes
corresponding to a configuration which will be studied in the numerical results (material A in
acoustical configuration). It can be observed that two categories of modes can be distinguished by
this criterion. These sets can be separated by the empirical value X ¼ 1: Always by analogy with
fluid structure interaction problems, modes with X > 1 will be referred to as ‘fluid controlled
modes’ because most of the energy is stored in the fluid phase. The second category ðXo1Þ will be
called ‘solid controlled modes’.

5.2.2. Modal powers

The separation of modes into two categories can also be highlighted when looking at the
partition of the powers dissipated by the different mechanisms when the material vibrates in a
given modal shape as a function of frequency. The evolutions of these different expressions versus
frequency are governed by the evolution of the tilded coefficient. Indeed, it can be observed that
the modal contribution can be separated in two parts. The first one is related to the evolution
versus frequency of the tilded coefficients. The second one is related to the mode shape.
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Fig. 2 shows the partition of the mean strain power and the mean kinetic power in each phase as
a function of frequency for the first solid controlled mode and the first fluid controlled mode. The
first observation concerns the mean strain power which is more important in the controlling phase
than in the other. For the kinetic power, a difference is observed between both categories of mode
but at high frequencies the modal kinetic power is more important in the solid phase in any case.
On the other hand, for the fluid controlled mode, the modal kinetic power is more important in
the fluid phase than in the solid phase at low frequency.

Fig. 3 presents the powers dissipated through the three phenomena given by Eq. (43) for the
first solid controlled mode and the first fluid controlled mode. One can observe that the difference
between the two behaviours exhibited previously is also met for the different dissipated powers. A
comparison between the thermal and structural dissipations indicates that structural dissipation is
most predominant for the solid controlled mode and reciprocally for the thermal dissipation in the
fluid controlled mode. For the viscous dissipated power, no significant variation with the
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Fig. 2. (a) Solid controlled mode: mean strain energy, (b) solid controlled mode: mean kinetic energy, (c) fluid

controlled mode: mean strain energy, (d) fluid controlled mode: mean kinetic energy. Thin line: solid phase; bold line:

fluid phase. Unit dB ref: 10�12 W:
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frequency is observed for the fluid controlled mode and an increase at higher frequencies for the
solid controlled mode can be observed. This can be explained by comparing the evolutions of the
different terms of the viscous dissipated power. Fig. 4 presents the three parts of the viscous
dissipated power as a function of frequency. The evolution of the solid part follows ðo3=2ÞIð *rÞ
and the one of the fluid phase is governed by Iðh2=2ofr22r22Þ: For the fluid controlled mode, P

f
vis

dominates and as Iðh2=2ofr22r22Þ is not much frequency dependant, no significant variation is
observed. For the solid controlled mode, the fluid term is dominant up to a given frequency, and
then, the solid term is prevalent. The coupling term is always negligible compared to the dominant
term. The evolution of the viscous dissipated power as a function of frequency can be explained:
the first term ðPs

visÞ is prevalent but as ðo3=2ÞIð *rÞ tends to zero at low frequency, the modal
viscous dissipated power is there governed by the fluid phase and the higher the frequency, the
more preponderant the solid term becomes.
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This energetic study allows for the classification of modes in two categories: the solid controlled
modes and the fluid controlled modes. An analysis of the variation of the partition of the
phenomena versus frequency was also initiated and confirmed the separation in two categories.
The follow-up of this analysis is an extension of this paper.

6. Results

6.1. Introduction

This section is devoted to the presentation of numerical simulations. It consists of the
comparison of the results obtained by a direct solution of the poroelastic problem and the ones
obtained by the generalized complex modes technique for different sets of selected modes. The
reference solution is first presented and the convergence of the modal approach is then
investigated. The aim of this section is to show that the modal technique can decrease significantly
the sizes of the systems to solve.

In Section 4.1 it was mentioned that the use of internal symmetries could be relevant. Here, all
the configuration parameters and results in term of number of degrees of freedom are given
without taking into account the eventual use of symmetry properties. This choice was done in
order to compare the reference and the modal solution in a sound way. Nevertheless, the
implementation of the modal approach was done by using as often as possible the symmetry
properties described before.

Two configurations are considered. The first one, called the mechanical configuration consists
of a sample of a poroelastic material bonded onto a rigid wall, with free lateral edges and excited
by a rigid piston motion (a uniform normal displacement of the solid phase on the surface of
excitation is imposed). The second one, called the acoustic configuration is the case of a porous
medium bonded onto a rigid wall with bonded lateral edges and with an imposed uniform
pressure on the surface of excitation.

Different kinds of porous materials (principally foams and wools) have been investigated.
Similarities between the convergence of the method for these different materials have been
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Table 1

Samples characteristics

Sample Material A Material B Material C

Flow resistivity, s ðkN=m4 sÞ 32 10.8 20.2

Porosity, h 0.96 0.91 0.92

Tortuosity, aN 1.7 1.0 1.2

Viscous characteristic length, L ðmÞ 90 � 10�6 105 � 10�6 63:8 � 10�6

Thermal characteristic length, L0 ðmÞ 165 � 10�6 129 � 10�6 133:8 � 10�6

The Poisson coefficient, n 0 0.41 0

In vacuo shear’s modulus, N ðkPaÞ 84.5 76.3 185.7

Structural damping coefficient, Zs 0.1 0.1 0.1

Solid density, r1 ðkg=m3Þ 30 8.9 92.6
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observed. Their physical properties are given in Table 1 corresponding to two wools (A and C)
and one foam (B).

6.2. Reference solution

The solution of the initial problem (1) is considered as the reference solution and is computed at
each frequency by a direct solution of the system based on a Gauss method. In the case of interest,
this solution is given by a commercial software (NOVArMecanum Inc. [23]). The comparison of
this solution with the results obtained by the modal approach is carried out through the
computation of classical vibro-acoustic indicators: the mean square velocity along the i-axis
(where i correspond to x; y or z) referred to as /V2

i S and the mean square pressure noted /P2S:
These indicators are:

/V2
i S ¼

o2

2O

Z
O
juij2 dO ¼

o2

2O
un½Ti�t½Mint�½Ti�u; ð44aÞ

/P2S ¼
1

2O

Z
O
jPj2 dO ¼

o2

2O
Pn½Qint�P; ð44bÞ

½Ti� is a boolean matrix which gives the displacements along the considered direction. The
dissipated powers whose expressions have been given in the previous section are also considered.

The works on the convergence of poroelastic finite elements [11,16,24] indicate that for a large
range of materials an empirical criterion of convergence of the finite-element solution consists in
using a size of element smaller than l=12 (l is the minimum value of Biot’s wavelength) for a
correct estimate of the amplitude of the solution in dB. In the present study, the procedure to
obtain a mesh leading to a number of d.o.f.’s as small as possible is as follows. For each
configuration, according to the geometrical dimensions of the problem an initial mesh is chosen
corresponding to a l=6 discretization. Then the mesh is refined until obtaining no significant
variation of the vibroacoustic indicators.

6.3. Modal solutions

While investigating the method, several observations have been made. The first one is that the
convergence speed depends more on the configuration (mechanic, acoustic) than on the nature of
the material (wool, foam). Indeed two kinds of convergence behaviour appear, each one
corresponding to a given configuration. For the mechanical configuration the convergence can be
considered as classical in the sense that while increasing ac the precision grows. For the acoustical
configurations, differences occurred and problems of convergence for the indicators of the fluid
phase were pointed out. Hence, it is first observed a convergence of only the indicators of the solid
phase. Secondly the augmentation of ac (i.e., the increase of the number of selected modes) did not
improve significantly the results. The convergence of the fluid phase indicators together with the
perfect convergence of the one of the solid phase indicators was obtained later on when increasing
the number of kept modes.

To illustrate this, four different simulations are presented here, each one is a sample of the
observed results in the numerical simulations. The dimensions of the samples and the mesh

ARTICLE IN PRESS

O. Dazel et al. / Journal of Sound and Vibration 268 (2003) 555–580570



obtained with the discretization process described in Section 6.2 are given in Table 2. The
convergence of the generalized complex mode technique in each of these cases is investigated in
the following section.

6.3.1. Material B in mechanical configuration

Fig. 5 shows the values of the vibro-acoustic indicators in dB versus frequency and depicts the
response of a sample of material B in a mechanical configuration in the frequency range
½0; 500 Hz�: This material corresponds to an elastic foam. It can be observed in Table 2 that this
number of nodes is of the same order as the one given by the criterion given by the literature
[11,24]. This leads to a 1572 d.o.f. problem. In this case, the number of d.o.f. allowing one to
achieve the convergence of the solution significantly decrease when the modal technique is used.
Sixty-four d.o.f. corresponding to a selection of 15 modal shapes ðac ¼ 2:5Þ are sufficient. Note
that even a 24 d.o.f. problem corresponding to a selection of 5 modal shapes ðac ¼ 1:5Þ can be
considered as acceptable. There is quite a good estimation of the total dissipated power and
pressure and velocity along the z-axis. For the dissipation properties, only 24 d.o.f.’s are sufficient.

6.3.2. Material C in mechanical configuration

Fig. 6 shows the values of the vibro-acoustic indicators in dB versus frequency and displays
the response of a sample of material C in a mechanical configuration in the frequency band
[10–500 Hz]. This material corresponds to a wool. Its Poisson’s ratio is zero and its Young’s
modulus is higher than the one of material B. The mesh needed to achieve the convergence of the
solution leads to a 3582 d.o.f. problem. The process of convergence of the generalized complex
modes is comparable to the former case. One can see that the number of degrees of freedom needed
to obtain an accurate result with the modal approach is 124 which corresponds to keeping 30 modal
shapes ðac ¼ 3:2Þ in the modal expansion. The decrease is here also quite important. In this case,
even a 84 d.o.f. problem corresponding to a 20 modes selection ðac ¼ 2:1Þ can be considered as
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Table 2

Geometry and meshes

Sample Material A Material B Material C

Biot wavelength P1ð500 HzÞ ðcmÞ 40.2 34.0 20.1

Biot wavelength P2ð500 HzÞ ðcmÞ 25.9 30.9 4.5

Biot wavelength Sð500 HzÞ ðcmÞ 20.5 10.6 3.2

Lx ðcmÞ 15 15 10

Ly ðcmÞ 10 10 10

Lz ðcmÞ 5 5 5

Theoretical number of nodes ðxÞ 9 17 19

Theoretical number of nodes ðyÞ 6 12 19

Theoretical number of nodes ðzÞ 3 6 7

Chosen number of nodes ðxÞ 10 15 15

Chosen number of nodes ðyÞ 8 10 12

Chosen number of nodes ðzÞ 6 7 6
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acceptable. This is another case where a modal treatment of the problem is well appropriated. For
mechanical configurations, it is proposed empirically and as an estimate to consider ac around 3.

6.3.3. Materials A and B in acoustical configuration
Consider now the acoustical configuration. Fig. 7 shows the values of the vibro-acoustic

indicators in dB versus frequency and depicts the response of a sample of material A in the
frequency range ½10; 500 Hz�: 3030 d.o.f.’s are needed to obtain the convergence of the finite
element model. As discussed in the general considerations section, the convergence of the method
can be divided in three parts. The first one is the convergence of the indicators of the solid phase
but without interesting results regarding to the fluid phase. The second part is the addition of
modes without any noticeable improvements neither in the solid phase nor in the fluid phase and
finally, the addition of further modes leads to the acquisition of accurate results. Consequently,
there were two distinct phases of convergence and by looking at the classification of modes done
in the previous section, it appears that they, respectively, correspond to the addition of solid
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Fig. 5. Material B. Mechanical excitation: (a) mean square pressure, (b) mean square velocity along x-axis, (c) mean

square velocity along z-axis, (d) total dissipated power. —3—, exact (1572 d.o.f.’s); —þ—, 24 d.o.f.’s; —X—, 44

d.o.f.’s; —*—, 64 d.o.f.’s.
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controlled modes (the first ones) and of fluid controlled modes (second ones). Hence it seems that
the energetic interpretation can be used judiciously to improve the process of selection. The idea is
then to consider differently the solid controlled and fluid controlled modes and for each category
to give a corresponding critical parameter as

c and a f
c for, respectively, the solid and fluid modes. A

user will then select the solid controlled modes whose imaginary part of the eigenvalue is lower
than as

comax and the fluid controlled modes with oioa f
c omax where omax is the maximum

frequency of the spectrum of excitation.
By recalling the numerical results on material A; the convergence of the solid modes improves

up to a limit value corresponding to as
c ¼ 1:3 (i.e., 84 d.o.f. or 20 modal shapes). While increasing

as
c; additional solid modes are selected but no significant improvement in the convergence process

occurs. It can be seen that the convergence is good for the velocity indicators but limited for the
mean square pressure and the absorption coefficient. The idea is now to use the new process of
selection which separates solid controlled and fluid controlled modes. The addition of the fluid
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Fig. 6. Material C. Mechanical excitation: (a) mean square pressure, (b) mean square velocity along x-axis, (c) mean

square velocity along z-axis, (d) total dissipated power. —3—, exact (5582 d.o.f.’s); —þ—, 44 d.o.f.’s; —X—, 84

d.o.f.’s; —*—, 124 d.o.f.’s.
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modes controlled improves the convergence up to a f
c ¼ 4:2 corresponding to a total of 124 d.o.f.

It is interesting to note that not all the solid controlled modes with oroa f
c omax were selected.

Some of them were discarded without penalizing the convergence of the solution.
Fig. 8 displays similar results for the application of the technique to the calculation of the

response of a sample of material B in an acoustical configuration. 7944 d.o.f. are here needed to
obtain the convergence of the finite-element model. The same observations as before can be done.
Only the selected solid modes corresponding to a as

c ¼ 1:9 give an accurate results for the solid
indicators but to obtain a good accuracy on the fluid indicators, one has to select additional fluid
modes. A selection corresponding to a f

c ¼ 5:6 (208 modes) gives accurate results.
These two examples show the validity of the application of the generalized complex mode

technique to acoustical cases. Nevertheless, the procedure of selection was modified by
distinguishing the solid controlled and fluid controlled modes. This does not seem to be necessary
in the case of mechanical configurations. For these configurations, it is proposed empirically and
as an estimate to consider as

c around 2 and a f
c around 5.
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Fig. 7. Material A. Acoustical excitation: (a) mean square pressure, (b) mean square velocity along x-axis, (c) mean

square velocity along z-axis, (d) absorption coefficient. —3—, exact (3030 d.o.f.’s); —X—, solid modes (84 d.o.f.’s);

—*—, solid modes and fluid modes (124 d.o.f.’s).
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7. Conclusion

This paper presented the application of the generalized complex mode theory to the calculation
of the forced response of a three-dimensional poroelastic material subjected to acoustical and
mechanical excitations.

The first part described analytical and numerical contributions. In particular, the theoretical
stability of the solution has been proved. Numerical improvements as the construction of the
augmented problem and projection of the initial system on the modal family were then described.

The second part was dedicated to the numerical aspects and to the obtained results. An
investigation of the different modal powers has first been performed. This enabled one to obtain
informations on the different modes and to classify them in two categories: the one controlled by
the solid phase and the other ones controlled by the fluid phase. A new selection procedure was
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then deduced from this distinction. Numerical results obtained by the modal technique have been
successfully compared to those computed by a direct solution of the finite element system. In
particular, two configurations, called mechanical and acoustical, have been considered. The
mechanical one leads to accurate results with the original procedure of selection. The acoustic
configuration does not converge in the same way and leads to accurate results with the new
selection procedure. With such a procedure of selection it was observed that the method leads to a
significant reduction of the number of d.o.f. of the systems.

As the reduction is significant, the procedure for the calculation of modes now needs to be
improved by taking advantage of all the analytical properties of the general eigenvalue problem.
Further work involves applying this technique to multi-layered structures involving poroelastic
materials.

Appendix A. Supplementary calculations

First rewrite the different terms of Eq. (24). By using the expression of matrix ½Cint�; one has

�#g
#1

r22

un½Cint�P ¼ Cs
dyn � Ccoup; ðA:1aÞ

where

Cs
dyn ¼ s2

Z
O

cr12r12

r22

unU þ
cr12r12

r22

cr12r12

r22

unu

� �
dO; ðA:1bÞ

and

Ccoup ¼ s2
Z
O

#Q

R
unU þ

cr12r12

r22

unu

� � !
dO: ðA:1cÞ

Eq. (24) is now multiplied by cr22r22 defined by Eq. (27) to give

un½Kint�u|fflfflfflfflffl{zfflfflfflfflffl}
K

þ s2 #run½Mint�uþ cr22r22C
s
dyn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M

�cr22r22Ccoup ¼ 0; ðA:2Þ

with

K ¼
Z
O

drsðu;UÞrsðu;UÞ �
#Q

R
dr f ðu;UÞr f ðu;UÞ

 !
: esðuÞ dO; ðA:3aÞ

and

M ¼
Z
O

cr011r011unu þ cr22r22

cr12r12

r22

unU

� �
dO; ðA:3bÞ

with the definition of cr011r011 recalled in Eq. (27).
The first term of Eq. (25) is equal to

%#1

r22

#gPn½Cint�tu ¼ Ccoup � C
f

dyn; ðA:4Þ
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C
f

dyn ¼
cr12r12

r22

s2
Z
O

Unu þ
cr12r12

r22

unu

 !
dO: ðA:5Þ

Then, definition (19) gives

h2

s2

#1

r22

%#1

r22

rPnrP ¼ s2 UnU þ
cr12r12

r22

unU

 !
þ C

f
dyn: ðA:6Þ

On the other hand, the constitutive law of the fluid phase (20b) yields to

h2
%#1

r22

#1

R
Pn:P ¼

%#1

r22

dr f ðu;UÞr f ðu;UÞ : e f ðUÞ þ
#Q

R
esðuÞ

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K f

: ðA:7Þ

The conjugate of Eq. (25) multiplied by cr22r22 defined by Eq. (27) leads to

cr22r22Ccoup þ
Z
O
cr22r22 UnU þ

cr12r12

r22

Unu

� �
dOþ

Z
O
Kf dO ¼ 0: ðA:8Þ

The sum of equation and Eqs. (A.2) and (A.8) yields

�Gkin þ Gdef ¼ 0; ðA:9aÞ

Gkin ¼ �s2
Z
O

cr011r011unu þ cr22r22

cr12r12

r22

ðunU þ UnuÞ þ cr22r22UnU

� �
dO; ðA:9bÞ

Gdef ¼
Z
O
ð drsðu;UÞrsðu;UÞ : esðunÞ þ dr f ðu;UÞr f ðu;UÞ : e f ðUnÞÞ dO: ðA:9cÞ

Appendix B. Rewriting s2Gkin

One has

�s2Ik ¼ s2 cr011r011 þ cr22r22

cr12r12

r22

� �
juj2 þ cr22r22 þ s2cr22r22

cr12r12

r22

� �
jU j2 � s2cr22r22

cr12r12

r22

ju � U j2: ðB:1Þ

The sign of the real and imaginary parts of each one of these terms is now investigated. This sign
can be obtained by looking at the one of the first order terms. One has

cr011r011 þ cr22r22

cr12r12

r22

� �
¼ r11 þ O

s

H

""" """2� �
; ðB:2aÞ

cr22r22 þ cr22r22

cr12r12

r22

� �
¼ r22 þ O

s

H

""" """2� �
; ðB:2bÞ

scr22r22

cr12r12

r22

¼ �sh2 �
sh2

2

s

H
þ r12s þ O

s

H

""" """2� �
: ðB:2cÞ

ARTICLE IN PRESS

O. Dazel et al. / Journal of Sound and Vibration 268 (2003) 555–580 577



s is the flow resistivity and is positive. One can rewrite

s2 cr011r011 þ cr22r22

cr12r12

r22

� �
¼ r11s2 þ s2

s

H

""" """2ðr11ðsÞ þ ji11ðsÞÞ; ðB:3Þ

s2 cr22r22 þ cr22r22

cr12r12

r22

� �
¼ r22s2 þ s2

s

H

""" """2ðr22ðsÞ þ ji22ðsÞÞ; ðB:4Þ

�s2cr22r22

cr12r12

r22

¼ sh2s þ
sh2

2H
s2 � r12s2 þ s

s

H

""" """2ðr12ðsÞ þ ji12ðsÞÞ; ðB:5Þ

with r11; i11; r22; i22; r12; i12 real functions of s which are all Oð1Þ: Hence, the first term of s2Ik is

s2 r11 þ
s

H

""" """2r11ðsÞ
� �

juj2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A Rþ

þs2 j
s

H

""" """2i11ðsÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
AOðj s

H
jÞ

0BBB@
1CCCAjuj2: ðB:6Þ

A similar expression is obtained for the second term. For the last one, it is recalled that r12o0 and

sh2

2H
� r12

� �
ju � U j2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ARþ

s2 þ sh2 þ
s

H

""" """2r12ðsÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ARþ

þj
s

H

""" """2i12ðsÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
A O

s
H

) *2

0BBBB@
1CCCCA ju � U j2|fflfflfflffl{zfflfflfflffl}

A Rþ

s: ðB:7Þ

Hence,

�s2Ik ¼ s2m11ðsÞjuj
2 þ s2m22ðsÞjU j2 þ s2m12ðsÞjU � uj2 þ sc12ðsÞjU � uj2; ðB:8Þ

with the four functions m11ðsÞ; m12ðsÞ; m22ðsÞ; c12ðsÞ so that the real is positive and the imaginary
part is Oðjs=H jÞ2:
Gkin is then so that

�Gkin ¼ s2mðsÞ þ sckinðsÞ; ðB:9Þ

with m and ckin functions of s with a positive real part and an imaginary part in Oðjs=H jÞ2:

Appendix C. Rewriting Gdef

For Id ; a similar result is obtained by using the constitutive laws (20a) and (20b). cKfKf is
introduced by cKfKf ¼

1dh1=Rh1=R
; ðC:1Þ

and the constitutive laws are multiplied by hcKfKf : Hence,

drsðu;UÞrsðu;UÞ ¼ hcKfKf

#A

R
r � uIþ 2NesðuÞ þ hcKfKf

#Q

R
r � UI; ðC:2aÞ
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dr f ðu;UÞr f ðu;UÞ ¼ hcKfKf r � UIþ hcKfKf

#Q

R
r � uI: ðC:2bÞ

The contracted product by, respectively, esðunÞ and e f ðUnÞ yields

drsðu;UÞrsðu;UÞ : esðunÞ ¼ hcKfKf

#A

R
r � ur � un þ 2NesðuÞ : esðunÞ þ hcKfKf

#Q

R
r � Ur � un; ðC:3aÞ

dr f ðu;UÞr f ðu;UÞ : e f ðunÞ ¼ hcKfKf r � Ur � Un þ hcKfKf

#Q

R
r � ur � Un: ðC:3bÞ

By recalling Eq. (22), one obtains

Idef ¼ 2NesðuÞ : esðunÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
A Rþ

þ 2N
n

ð1� 2nÞ
jr � uj2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A Rþ

þhcKfKf
1� h

h
r � u þr � U

"""" """"2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A Rþ

: ðC:4Þ

The first terms of cKfKf are cKfKf ¼ P0|{z}
A Rþ

þ
2ðg� 1Þ

g|fflfflfflffl{zfflfflfflffl}
A Rþ

s

H 0 þ O
s

H 0

+ ,2

: ðC:5Þ

Finally, Gdef can be written as

Gdef ¼ k0 þ scd þ rkðsÞ þ jikðsÞ: ðC:6Þ

k and cd in Rþ and both real functions of rk and ik in Oðjs=H 0jÞ2:

References

[1] M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range,

Journal of the Acoustical Society of America 28 (1956) 168–178.

[2] D.L. Johnson, J. Koplik, R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous

media, Journal of Fluid Mechanics 176 (1987) 379–402.

[3] Y. Champoux, Etude Exp!erimentale du Comportement Acoustique des Mat!eriaux Poreux "a Structure Rigide,

Ph.D. Thesis, Carleton University, Ottawa, 1991.

[4] J.F. Allard, Propagation of Sound in Porous Media, Modelling Sound Absorbing Materials, Elsevier Application

Science, New York, 1993.

[5] Y.J. Kang, J.S. Bolton, Finite element modeling of isotropic elastic porous materials coupled with acoustical finite

elements, Journal of the Acoustical Society of America 98 (1995) 635–643.

[6] J.P. Coyette, H. Wynendaele, A finite element model for predicting the acoustic transmission characteristics of

layered structures, in: S. Bolton, R.J. Bernhard (Eds.), Proceedings of Inter-Noise 95, Noise Control Foundation,

Poughkeepsie, NY, 1995, pp. 1279–1282.

[7] R. Panneton, N. Atalla, An efficient finite element scheme for solving the three-dimensional poroelasticity problem

in acoustics, Journal of the Acoustical Society of America 101 (1997) 3287–3298.

[8] P. G .oransson, A 3d, symmetric finite element formulation of the Biot equations with application to acoustic wave

propagation through an elastic porous medium, International Journal for Numerical Methods in Engineering 41

(1998) 167–192.

[9] S. Gorog, R. Panneton, N. Atalla, Mixed displacement pressure formulation for acoustic anisotropic open porous

media, Journal of Applied Physics 82 (1997) 4192–4197.

ARTICLE IN PRESS

O. Dazel et al. / Journal of Sound and Vibration 268 (2003) 555–580 579



[10] N. Atalla, R. Panneton, P. Debergue, A mixed displacement–pressure formulation for poroelastic materials,

Journal of the Acoustical Society of America 104 (1998) 1444–1452.

[11] P. Debergue, R. Panneton, N. Atalla, Boundary conditions for the weak formulation of the mixed (u,P)

poroelasiticity problem, Journal of the Acoustical Society of America 104 (1999) 2383–2390.

[12] N.-E. Horlin, M.Nordstrogm, P. Goransson, A 3-D hierarchical FE formulation of Biot’s equations for elasto-

acoustic modelling of porous media, Journal of Sound and Vibration 182 (2000) 479–494 doi:10.1006/

jsvi.2000.3556.

[13] S. Rigobert, Mod!elisation par !El!ements Finis des Syst"emes !Elasto-poro-acoustiques Coupl!es, El!ements

Hierarchiques, Maillages Incompatibles, Mod"eles Simplifi!es, Ph.D. Thesis, Institut National des Sciences

Appliqu!ees de Lyon, Universit!e de Sherbrooke, 2001.

[14] D. Pilon, Influence des Conditions aux Limites sur les Mesures Acoustiques au Tube "a ondes stationnaires, Master

Thesis, Universit!e de Sherbrooke, Qu!ebec, 2001.

[15] F. Sgard, N. Atalla, R. Panneton, A mixed wave-finite element approach for solving Biot’s poroelasticity equations

in acoustics, 16th International Congress on Acoustics/135th Meeting of the Acoustical Society of America,

Seattle, WA, 1998.

[16] R. Panneton, Mod!elisation Num!erique Tridimensionelle par !El!ements Finis des Milieux Poro!elastiques, Ph.D.

Thesis, Universit!e de Sherbrooke, Qu!ebec, 1996.

[17] F. Sgard, N. Atalla, R. Panneton, A modal reduction technique for the finite element formulation of Biot’s

poroelasticity equations in acoustics applied to multilayered structures, 16th International Congress on Acoustics/

135th Meeting of the Acoustical Society of America, Seattle, USA, 1998.

[18] O. Dazel, F. Sgard, C.-H. Lamarque, N. Atalla, An extension of complex modes for the resolution of finite-

element poroelastic problems, Journal of Sound and Vibration 253 (2002) 421–445.

[19] W.J. Duncan, R.A. Fraser, A.R. Collar, Elementary Matrices and Some Applications to Dynamics and

Differential Equations, Cambridge University Press, Cambridge, 1938, p. 289.

[20] F. Chatelin, Valeurs Propres de Matrices, Masson, Paris, 1988.

[21] T.J. Bridges, P.J. Morris, Differential eigenvalue problems in which the parameter appears nonlinearly, Journal of

Computational Physics 55 (1984) 437–460.

[22] F. Sgard, N. Atalla, J. Nicolas, A numerical model for the low-frequency diffuse field sound transmission loss of

double-wall sound barriers with elastic porous lining, Journal of the Acoustical Society of America 108 (2000)

2865–2872.

[23] Nova, Mecanum Numerical Software Inc, Qu!ebec.

[24] N. Dauchez, S. Sahraoui, N. Atalla, Convergence of poroelastic finite elements based on Biot displacement

formulation, Journal of the Acoustical Society of America 109 (2001) 33–40.

ARTICLE IN PRESS

O. Dazel et al. / Journal of Sound and Vibration 268 (2003) 555–580580


	Application of generalized complex modes to the calculation of the forced response of three-dimensional poroelastic materials
	Introduction
	Generalized complex mode technique
	The original poroelastic problem
	Presentation of the technique

	Stability of the solution
	Numerical improvements of the method
	Configuration of interest and symmetries
	Construction of the augmented problem
	General considerations
	The modified poroelastic eigenvalue problem

	Search for modes
	Selection of modes
	Projection

	Study of generalized complex modes
	General considerations
	Energetic interpretation of modes
	Classification of modes
	Modal powers


	Results
	Introduction
	Reference solution
	Modal solutions
	Material B in mechanical configuration
	Material C in mechanical configuration
	Materials A and B in acoustical configuration


	Conclusion
	Supplementary calculations
	Rewriting s2Gammakin
	Rewriting Gammadef
	References


